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Abstract:  Flight testing of a fully-instrumented model-scale unmanned helicopter (Yamaha R-50 with 10ft.
diameter rotor) was conducted for the purpose of dynamic model identification. This paper describes the
application of  CIFER  system identification techniques, which have been developed for full size helicopters, to
this aircraft. An accurate, high-bandwidth, linear state-space model was derived for the hover condition. The
model structure includes the explicit representation of regressive rotor-flap dynamics, rigid-body fuselage
dynamics,  and the yaw damper. The R-50 configuration and identified dynamics are compared with those of a
dynamically scaled UH-1H. The identified model shows excellent predictive capability and is well suited for
flight control design and simulation applications.
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1 Introduction
The interest in unmanned aerial vehicle (UAV)
systems with helicopter-like capabilities for both civil
and military applications, is becoming well established.
The US Navy, for example, is developing a vertical
takeoff and landing tactical unmanned aerial vehicle
(VTUAV) for a wide range of ship and land-based
missions. Ship-based operations include automatic
take-off and recovery in up to 25-40kts wind and ship
deck motion of up to +/-8deg roll [1].

In order for helicopter-based UAVs (HUAVs) to be
useful, it is crucial that the flight-control system does
not restrict their attractive attributes: the extended
flight-envelope and the capability for vertical take-off
and landing. Today, progress in the development of
HUAVs is mainly hindered by the complexity of the
modeling and flight-control design and by the absence
of efficient tools to support these tasks.

In general, the design of flight control systems for
helicopters is a difficult problem. Unlike fixed-wing
UAVs, the bare airframe HUAV exhibits a high degree
of inter-axis coupling, highly unstable and non-
minimum phase dynamic characteristics, large
response variations with flight condition, and large
delays associated with the rotor. The broad
performance potential of the helicopter is in fact
directly related to the complex character of its flight-
dynamics, which are responsible for a number of
difficult control issues. Maneuverability is related to
fast or even unstable dynamics, and the strong control

response is related to a high sensitivity to inputs
(including disturbances such as wind gusts).

The complexity of helicopter flight dynamics makes
modeling itself difficult, and without a good model of
the flight-dynamics, the flight-control problem
becomes inaccessible to most useful analysis and
control design tools. The goal of achieving good
control performance translates directly to accuracy and
bandwidth requirements of the model [2]. High-
bandwidth models are also important for simulation,
improvement and validation of first-principle based
models, and the evaluation of handling qualities. More
generally, the ability to derive accurate dynamic
models using real flight-data represents a key part in
the integration of the flight-control design process.

System identification has been very successful in full-
size helicopters. This efficient application of system
identification to helicopters is due in large part to the
high level of technicality involved in the procedure and
the tools. These techniques, if applied properly, should
be equally successful for small-size unmanned
helicopters.

This paper presents a detailed example of the
application of a full-size helicopter’s identification
methods to a small-size unmanned helicopter in hover
flight. The goal of this experiment is to determine how
well the full-size system identification techniques
apply to small-size unmanned helicopters, and see
whether accurate models can be derived through this
procedure. The experiment also represents an
opportunity to understand the dynamics of small-size



helicopters in  light of what is known about full-size
helicopters. Dynamic scaling rules are used to
compare the configuration and identified dynamics of
the small-size R50 with the full-size UH-1H
helicopter. This is especially interesting here because
the comparison takes place within the specific
framework of system identification, thereby allowing
for simple and explicit analyses ranging from
questions about the model structure to more precise
aspects such as the modal characteristics or even
physical parameters.

2 Description of the Helicopter
The helicopter used for the identification experiment is
a Yamaha R-50 modified by Carnegie Mellon’s
Autonomous Helicopter project [3] for research in
vision-based autonomous flight. The R -50 is a
commercially available small-size helicopter originally
designed for crop-dusting applications.

The R-50 uses a two-bladed teetering main rotor with a
Bell-Hiller stabilizer bar. The relatively rigid blades
are connected to the hub via a yoke which offers
independent flapping motion through elastomer
fittings. The yoke is attached to the rotor shaft over the
teetering hinge in an underslung configuration,
eliminating the Coriolis forces and the associated in-
plane blade  motion. The teetering motion is also
restrained by an elastomer damper/spring. This rotor
system is stiffer than classical teetering rotors.

The Bell-Hiller stabilizer consists of a pair of paddles
that mechanically provides a lagged rate (or “pseudo-
attitude”) feedback in the pitch and roll loops [4]. The
low frequency dynamics are stabilized, which
substantially increases the phase margin for
pilot/vehicle system in the crossover frequency range
(1-3 rad/sec) [4]. The pseudo-attitude feedback also
reduces the response of the aircraft to wind gusts and
turbulence. These improvements in aircraft handling
and low-frequency stability are achieved at the
expense of increasing the response time constant of the
rotor to about 5 rotor revs, thereby reducing the
damping in the coupled fuselage/rotor-flap dynamics.
Additional characteristics of the R-50 are given in
Table 1 and Figure 1b. Figure 1a shows Carnegie
Mellon’s instrumented R-50 in hover flight.

 Helicopter Instrumentation

Carnegie Mellon’s instrumented helicopter represents
an excellent platform for the identification experiments
because of its state-of-the-art instrumentation, which
provides high quality flight-data.

The centerpiece of the helicopter onboard systems is a
VME-based on-board flight computer which hosts a
Motorola 68060 processor board and a sensor I/O
board. All sensors and actuators of the helicopter
connect through the I/O board with the exception of the
inertial measurement unit (IMU), which connects
directly to the processor board through a special serial
port. The communication to the ground station takes
place via  wireless Ethernet. This system runs under a
VxWorks real-time operating system.

Dimensions see Figure 1a
Rotor speed
Tip speed

850 rpm
449 ft/sec

Dry weight
Instrumented (full
payload capability)

97 lbs
150 lbs

Engine type water cooled, 2-
stroke, 1 cylinder

Flight autonomy 30 minutes

Table 1 – R50 physical characteristics

1,130

1,775

3,070

2,655

520

1,080

Figure 1b - R50 dimensions (mm)
(based on R50 Operating Manual)

Figure 1a - Instrumented R50 in hovering flight



Three linear servo-actuators are used to control the
swash plate, while another controls the pitch of the tail
rotor. The dynamics of all the actuators have been
identified separately as first order. The engine speed is
controlled by a governor which maintains the rotor
speed constant in the face of changing rotor load.

Three navigation sensors are used: a fiber-optic based
inertial measurement unit (IMU), which provides
measurements of the airframe accelerations a a ax y z, , ,
and angular rates p q r, ,  (resolution: 0.002 g and
0 0027. o, data rate: 400 Hz); a global positioning system
(GPS) (precision: 2 cm, update rate: 4 Hz); and a
magnetic compass for heading information (resolution:
0 5. o, update rate: 2 Hz).

The IMU is mounted on the side of the aircraft, and the
GPS and compass are mounted on the tail. Each
measurement is corrected for its respective offset from
the center of gravity (c.g.). The c.g. location is known
only approximately.

A 12th order Kalman filter running at 100 Hz is used to
integrate the measurements from the IMU, GPS and
compass to produce accurate estimates of helicopter
position, velocity and attitude.

3 Frequency-domain Identification
Techniques

Frequency responses fully describe the linear dynamics
of a dynamical system. When the system has nonlinear
dynamics (as all real physical systems do), system
identification determines the describing functions
which are the best linear fit of the system response
based on a first harmonic approximation of the
complete Fourier series. For the identification, the
frequency domain method known as CIFER

(Comprehensive Identification from Frequency
Responses) [5]  was used. While CIFER  was
developed by the U.S. Army and NASA specifically
for rotorcraft applications, it has been successfully
used in a wide range of fixed and rotary-wing, and
unconventional aircraft applications [6]. CIFER

provides a set of utilities to support the different steps
of the identification process. All the tools are
integrated around a database system  which
conveniently organizes the large quantity of data
generated throughout the identification.

The different steps involved in the identification
process are:

Collection of flight-data. The flight-data is collected
during special flight experiments.

Frequency response calculation. The frequency
response for each input-output pair is computed using a
Chirp-Z transform. At the same time, the coherence
function for each frequency response is calculated.

Multivariable frequency domain analysis. The single-
input single-output frequency responses are
conditioned to remove the cross axis effects. The
partial coherences are computed.

Window Combination. The accuracy of the low and
high frequency ends of the frequency responses is
improved through optimal combination of frequency
responses generated using different window lenghts.

State-space identification. The parameters (derivatives)
of an a priori-defined state-space model are identified
by solving an optimization problem driven by
frequency response matching.

Time Domain Verification. Finally, to evaluate the
accuracy of the identified model, helicopter responses
from a flight-data set which was not used for the
identification are compared with the responses
predicted by the identified model.

4 Application of System Identification
The application of system identification to our small-
size unmanned helicopter follows the procedure for
full-size helicopters.

Collection of Flight-Data: Flight Experiments

For the collection of flight-data from our experiments,
the flight maneuvers were commanded by the pilot via
the remote control (RC) unit. To ensure the efficiency
of system identification, it is important to conduct the
flight experiments open-loop. This was possible for all
axes except yaw for which an active yaw damping
system was in use. In addition, to help the pilot in
controlling the coupled yaw and heave dynamics, the
pedal and collective inputs were subject to mixing.

The special flight maneuvers using frequency-sweeps
for pilot inputs are the same as those used in full-size
helicopters [7]. One separate sweep set is conducted
for each of the control inputs. During the time of the
experiment, all control inputs (stick inputs) and all
helicopter states are recorded with a sampling rate of
100 Hz.

For each experiment, the pilot applies a frequency
sweep to the particular control input. While doing so,
he uses the remaining three control inputs to maintain
the helicopter in trim at the selected operating point
(hover flight). In order to gather enough data, the same
experiment is repeated four to five times. Flight-data



from the best runs are then concatenated and filtered
according to the frequency range of interest (-3 dB @
10 Hz). A sample flight-data of longitudinal and lateral
response for two concatenated lateral frequency
sweeps is shown in Figure 2.

The quality of the collected flight-data can be
evaluated from the coherence values  computed
together with the frequency responses. The coherence
indicates how well one output is linearly correlated
with a particular input over the examined frequency
range. A poor coherence can be attributed to either a
poor signal to noise ratio or to nonlinear effects in the
dynamics. For our flight-data, all on-axis responses
attain a coherence close to unity over most of the
critical frequency range where the relevant dynamical
effects take place. (See Figure 3 in the Appendix.) For
example, the two on-axis angular rate responses to the
cyclic inputs achieve a good coherence (>0.6) up to the
frequencies where the important airframe/rotor
coupling takes place. These results speak for the
quality of the helicopter instrumentation, the
successfully performed flight experiments, and the
dominantly linear behavior of the helicopter in
hovering flight.

 Building the Identification Model Structure

The model structure for our small-size helicopter is
largely based on the model structure used for the
identification of full-size helicopters. The model
structure specifies the order and form of the differential
equations which describe the dynamics. Typically, the
dynamics of the helicopter are represented as rigid-
body (airframe dynamics, 6 degrees of freedom),
which can be coupled to additional dynamics such as
the rotor or engine/drive-train dynamics. Including

these subsystems improves the accuracy of the model
for the higher-frequency range and also makes for a
model which is physically more consistent (less
lumped).

The decision about what to include beyond rigid-body
dynamics is made according to the objective of the
identification (accuracy/bandwidth of the model) and
the actual nature of the dynamics. The nature of the
dynamics can be well understood by looking at the
frequency responses derived from the flight data.
Generally of special interest are the angular (roll and
pitch) responses of the helicopter to the cyclic inputs,
which constitute the core of the helicopter dynamics.

•  Angular dynamics

For our helicopter, the frequency response of the
rolling and pitching rates p and q to the lateral and
longitudinal cyclic inputs δ δlat lon, , (Figure 3 in the
Appendix) shows a pronounced underdamped second-
order behavior: the magnitude shows a marked, lightly
damped resonance followed by a 40dB/dec roll-off,
and the phase exhibits a 180o shift. The second order
nature of the response is well known in full-size
helicopters, and results from the dynamical coupling
between the airframe angular motion and the regressive
rotor flap dynamics (blade flapping a bs s1 1, ). The lightly
damped characteristic is a function of the setting of the
Bell-Hiller stabilizer bar gearing.

 The “hybrid model” approach, used in [5,7] is an
efficient way to represent the coupled airframe/rotor
dynamics. In this modeling approach, the lateral and
longitudinal blade flapping dynamics b as s1 1,  are
described respectively by two coupled first-order
differential equations.

Figure 2 – Sample flight data for two concatenated lateral frequency sweeps

. .
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In our case, best results were obtained with a coupled
lateral-longitudinal flapping rotor dynamics
formulation. The rotor time constant τ f includes the
influence of the stabilizer bar.

The rotor itself is coupled to the airframe dynamics
through the roll and pitch angular dynamics p q,  (Eq.
3-4) and the lateral and longitudinal translational
dynamics v and u  (Eq. 5-6), through rotor flapping
spring terms L M Y Xb a b as s s s1 1 1 1

, , , .

ṗ L u L v L b L au v b s a ss s
= + + +

1 11 1                               (3)

q̇ M u M v M b M au v b s a ss s
= + + +

1 11 1                          (4)

v̇ Y v g Y bv b s s= + +φ
1 1                                                 (5)

u̇ X u g X au a s s= − +θ
1 1                                              (6)

Good results were obtained using the hybrid model
structure; however, the results were further improved
by the addition of the off-axis spring terms:M Lb as s1 1

, .
Since the cross-axis effects are being accounted for in
the rotor equations (Eq. 1-2) the additional cross-axis
effects are apparently related to a noticeable tilt  of the
hub/shaft system relative to the fuselage axes.

The derivatives Y Xb s a s1 1
,  should theoretically be equal

respectively to plus and minus the value of the gravity
( g ft s= 32 2 2. / ). Constraining the two derivatives,
however, can only be enforced if the flight data has
been accurately corrected for an offset in the
measurement system location relative to the c.g.. Since,
in our case, the c.g. location is not known with
sufficient accuracy, we have explicitly accounted for a
vertical offset hcg  by relating the measured speeds
( v um m, ) to the speed at the c.g. (v u, ).

v v h pm cg= −                                          (7)

u u h qm cg= +                                          (8)

Using this method we were able to enforce the
constraint − = =X Y ga s b s1 1

 and at the same time
identify the unknown vertical offset hcg .

•   Heave dynamics

With regard to the heave dynamics, after examination
of the respective frequency response (Figure 3,
VZdot/COL in the Appendix), we see that a first order
system should adequately capture the dynamics. The
corresponding differential equation is:

ż Z w Zw col col= + δ                                       (9)

Note that the response does not exhibit the peak in
magnitude caused by the inflow dynamics, a peak
which is typical in full-size helicopters. This is because
the flap frequency for the R-50 (1/rev=89 rad/sec) is
well beyond the frequency range of identification and
of piloted excitation (30 rad/sec).

•  Yaw dynamics

Because of the use of an artificial yaw-damping system
during the flight experiments, the yaw response
exhibits a second order nature. To allow for an
accurate identification, the model structure must
account for this system.

The bare airframe yaw dynamics can be modeled as a
first order system with transfer function:

r N

s Nped

ped

rδ
=

−
                                     (10)

The artificial yaw damping is achieved using a yaw
rate feedback rfb; we assume that the yaw rate
feedback  can be modeled as a simple first order low-
pass filter with transfer function:

r

r

K

s K
fb r

rfb

=
+

                                     (11)

Closing the loop leads to the following transfer
function for the response between the pilot input δ ped

and the yaw r :

r N s K

s K N s K N N Kped

ped rfb

rfb r r ped r rfbδ
=

+
+ − + −

( )

( ) ( )2       (12)

The equivalent differential equations used for the state-
space model are:

˙ ( )r N r N rr ped ped fb= + −δ                           (13)

ṙ K r K rfb rfb fb r= − +                                     (14)

Since we have only the measurements of the pilot input
δ ped  and the yaw rate r , this representation is over-
parameterized. One constraint between two parameters
must be added to enable successful identification of the
parameters. As constraint, we have stipulated that the
pole of the low-pass filter must be twice as fast as the
pole of the bare airframe yaw dynamics, i.e.,:

K Nrfb r= − ⋅2                                    (15)

With this constraint, a low transfer function cost was
attained, and the resulting parameters are physically
meaningful, i.e., a good estimate of the bare airframe
yaw damping Nr  can be achieved.

 Full Model Structure

The complete model structure is obtained by collecting
all the differential equations in the matrix differential



equation:

ẋ Fx Gu= +                                     (16)
with state vector:

x u v p q a b w r r
T

s s fb= [ ]φ θ 1 1         (17)

and input vector:

u lat lon ped col
T

= [ ]δ δ δ δ                                  (18)

The different states are further coupled according to
the coherence obtained in the respective cross axis
frequency responses. For example, the heave dynamics
couples with the yaw dynamics through the derivatives
Zr  and N Nw col, .  The heave dynamics is also
influenced by the rotor flapping through the
derivativesZ Za bs s1 1

, .

The final structure is obtained by first systematically
eliminating the derivatives that have high insensitivity
and/or are highly correlated, and then reconverging the
model in a process described in [5]. The remaining
minimally parameterized model structure is given by
the system matrix F  and the input matrix G , shown in
Table 2.

5 Results
The converged model exhibits an excellent fit of the
frequency response data and an associated outstanding
overall frequency-response error cost  of 45 (Table 3),
which is about half the best values obtained in full
scale identification results.  Table 6 in the Appendix
gives the numerical values of the identified derivatives
and their associated accuracy statistics: the Cramer Rao
bound (%) and the insensitivity (%) of the derivatives.
These statistics indicate that all of the key control and
response parameters are extracted with a high degree
of precision [5]. Notice that most of the quasi-steady
derivatives have been dropped, thus showing that the

rotor plays a dominant role in the dynamics of small-
size helicopters. This is also reflected by the number of
rotor flapping derivatives ( )b1s or ( )a 1 s. The term
“actuated” helicopter is a good idealization of the
dynamics of the small-size helicopter, where the
actuator, i.e., the rotor, dominates the response.

An important result is the identified large rotor flap
time constant τ f rev= ≈0 38 5 4. sec . , which is due to the
stabilizer bar as discussed earlier. The identified rotor
angular-spring derivatives and quasi-steady damping
derivatives (e.g.,L M X Y Z Nb s a s u v w r1 1, , , , , ) have the sign
and relative magnitudes expected for hovering
helicopters, but the absolute magnitudes are all
considerably larger (2-5 times) than those for full scale
aircraft. This is expected from the dynamic scaling
relationships as discussed later herein.

With the help of the offset equations (Eq. 7-8) we were
able to constrain the force coupling derivatives to
gravity (− = =X Y ga s b s1 1

) and, at the same time,
identify the vertical c.g. offset which came out to be
h ftcg = −0 5. .

The lateral and longitudinal speed derivatives (Mu, Lv)
contribute a destabilizing influence on the phugoid
dynamics.

Finally, the time delays, which account for higher-
order rotor and inflow dynamics, processing, and
filtering effects, are small and accurately determined.
This indicates that the hybrid model structure
accurately captures the key dynamics.

Eigenvalues and Modes of Motion

The key dynamics of the R-50 are clearly seen from
reference to the system’s eigenvalues and eigenvectors

(see Table 4). The first four roots (eigenvalues #1-4)
are essentially on the real axis, two roots being stable
and two unstable. The unstable modes (eigenvalues #1-

Table 2 - System and input matrix for the state-state model
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2) involve the horizontal velocities with both attitude
angles. The stable modes (eigenvalues #3-4) involve
the horizontal and vertical velocities.

The damped real mode (eigenvalue #5) is associated
with the heave response The well damped oscillatory
pair (eigenvalues #6-7) is the closed-loop yawing mode
resulting from the active yaw damping system.

In the high-frequency range, the two very lightly
damped modes correspond to the coupled
fuselage/flapping/stabilizer-bar modes. First, the
pitching mode (eigenvalues #8-9), which has a
considerable roll coupling component (50%), has a
frequency that is nearly exactly the square root of the
pitch flap spring ( M rada s1 8 2= . / sec ). Similarly, the
coupled rolling mode with slight pitching component
(10%) (eigenvalues #10-11), has a frequency that
corresponds to the square root of the roll flap spring
( L radb s1 11 9= . / sec ). The small damping ratio
directly reflects the large rotor time constant. For
example in the roll axis:

ζ τroll flap f b sL− = =1 2 0 111( ) . ,                 (17)

which agrees with the complete system eigenvalue
result. This damping ratio for the coupled
fuselage/flapping/stabilizer-bar dynamics is  typical for
full scale helicopters employing a stabilizer bar [4].
The strongly-coupled fuselage/flapping modes
emphasize once more the importance of the rotor
dynamics.

 Dynamic Scaling

 A further understanding of the small-scale R-50
identification results is achieved through a comparison
with the characteristics of a conventional teetering
rotor configuration (UH-1H), dynamically scaled to the
same rotor diameter. Dynamic (or “Froude”) scaling
ensures that the model scale and full scale vehicles
share common ratios of inertia-to-gravity forces, and
aero-to-gravity forces. The geometric and dynamic
characteristics of the model scale (m) and full scale
aircraft (a) are then related via a well known standard
set of similarity laws [8] based on scale ratio N (e.g.,
N=5 refers to a 1/5th scale model):

Table 5 compares the key configuration parameters and
identified dynamic characteristics for  the R-50 with
the model-scale equivalents for the UH-1H. The scale
ratio is N=4.76, or nearly 1/5th scale. The R-50 is seen
to be about twice as heavy as a scaled down UH-1H,
due to the payload weight (53lbs.), which results in a
higher normalized thrust coefficient (CT/σ) than would
otherwise be expected. The R-50 blades are also
relatively heavier, giving a lower Lock number than
the UH-1H. These increased relative weights appear to
be typical of small-scale flight vehicles as seen from
reference to the scaled data for the TH-55 [9]. The
higher flap spring is due to the elastomeric teetering
restraint on the R-50, and is equivalent to an effective
hinge-offset of about 3%. The resulting roll/flap

Transfer
Function

Cost

VX  /LAT
VY  /LAT
P   /LAT
Q   /LAT
AX  /LAT
AY  /LAT
R   /LAT
AZ  /LAT

24.884
21.941
59.462
99.511
24.884
27.927
43.006
47.469

VX  /LON
VY  /LON
P   /LON
Q   /LON
AX  /LON
AY  /LON
AZ  /LON

38.731
47.747
101.110
67.118
38.731
47.747
25.681

R   /COL
AZ  /COL

42.241
21.673

R   /PED
AZ  /PED

63.530
9.875

Average 44.909

Table 3 - Transfer function costs

Length: L L Nm a=
Time constant: T T Nm a=
Weight: W W Nm a= 3

Moment of inertia: I I Nm a= 5

Frequency: ω ωm a N=

λ #
mode type

Re(λ ) Im( λ ) ζ ω
(r/s)

1-2
phugoid 1

0.287
0.287

0.064
-0.064

-0.976
-0.976

0.294
0.294

3-4
phugoid 2

-0.454
-0.454

0.046
-0.046

0.995
0.995

0.457
0.457

5
heave

-0.495 0 0 0

6-7
yaw-heave

-4.12
-4.12

5.97
-5.97

0.567
0.567

7.26
7.26

8-9
pitch

-1.25
-1.25

8.28
-8.28

0.149
0.149

8.37
8.37

10-11
roll

-1.41
-1.41

-11.8
11.8

0.119
0.119

11.85
11.85

Table 4 - Eigenvalues and modes for hover



frequency is 20% higher than the scaled equivalent
UH-1H. Finally, the non-dimensional rotor time
constants are essentially identical (about 5 revs),
showing the same strong effect of the stabilizer bar on
both aircraft. Despite some detailed differences, the R-
50 is seen to be dynamically quite similar to the UH-
1H.

Frequency Response Comparisons

The frequency responses from the identified model
match the flight data well as seen in Figure 3 in the
Appendix. This matching is expected from the very
low cost functions of Table 3. The poorest match is
obtained for the angular dynamics’ cross axis
responses (p  to δ lon and q  to δ lat ). If we look at the
corresponding diagram in Figure 3, we can see that the
corresponding responses exhibit a phase mismatch.
Better results could be achieved if the stabilizer bar

were modeled explicitly instead of lumping its
dynamics into the rotor equations (Eq. 1-2).

Once again, this close agreement is somewhat better
than what is usually achieved in full-size helicopters.
This can be attributed to the dynamics of the small-size
helicopter being dominated by the rotor dynamics and
the absence of complex aerodynamic effects.

 Time Domain Verification

Time domain verification was conducted by driving the
identified models with flight data not used in the
identification process. The results, which are presented
in Figure 4 and 5 in the Appendix, show an excellent
agreement between the model predictions and the flight
data for all control axes and outputs except the yaw
response, where a small amount of mismatch is
present. This is accounted for by the presence of the
active yaw damping system and the mixing between
the pedal and collective input. Better results could be
obtained if both systems were disabled during the
flight experiments or if the actual actuator inputs were
measured.

6 Conclusion
1. System identification techniques as used in full-

size helicopters can be successfully applied to
small-size unmanned helicopters. Small-size
helicopters seem to be particularly well suited to
identification. This is partly due to the dominance
of the rotor in the dynamics and the absence of
complex aerodynamic and structural dynamic
effects.

2. Good results were made possible because of the
state of the art  instrumentation system, including:
IMU, GPS, and Kalman filter.

3 .  CIFER  system identification techniques were
effectively used to derive an accurate high-
bandwidth model for the hovering helicopter (for
the conditions present during the flight-data
collection.) The identified model is well suited to
flight control and simulation applications.

4 . The R-50 was shown to be dynamically quite
similar to the scaled UH-1H. However, the R-50 is
proportionally heavier (aircraft weight and blade
inertia) and has a small effective hinge-offset (3%)
due to the elastomeric teetering restraint. The
dynamics of both helicopters are strongly
influenced by the stabilizer bar.

 Parameter  R-50  scaling  UH-1H
full-
scale

 UH-1H
model-
scale

 R, Rotor
rad.(ft)

 5.04  1/N  24  5.04

 W, Weight
(lb)

 150  1/N3  8000  74

 Ω, Rotor
rotation
rate (r/s)

 89.01  N  34  76.1

 Iβ  ,Blade
inertia,(s-
ft2)

 0.87  1/N5  1211  0.495

γ, Lock
number

 3.44  1  6.5  6.5

CT/σ  0.0896  1  0.0606  0.0606

 hrot/R ,
rotor hub
height

 0.36  1  0.29  0.29

 Lb1s, flap
spring (r/s2)

 142.5  N  19.2  96.77

 ωrf

roll/flap
freq,(r/s)

 11.85  N  4.38  9.83

 τfΩ, non-
dim. rotor
flap time
constant
(rotor rev.)

 5.4  1  5.7  5.7

Table 5 – Comparison of R-50 and dynamically-
scaled UH-1H characteristics, N=4.76



 Outlook

Currently, a next generation Yamaha helicopter (“R-
MAX”) is being instrumented at Carnegie Mellon. The
new system will allow access to the position of the
individual actuators and, in addition, a blade flapping
measurement system is being developed. With this
system, comprehensive identification studies and
potentially rotor state feedback will be possible. The
flight experiments and model identification will all be
extended to forward flight and, in parallel, we will start
using the derived models for flight control design.
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Appendix
 A1. Table of Identified Derivatives

Derivative Identified
Value

Cramer Rao
Bound (%)

Insens.
(%)

F-Matrix
TF 0.3753 4.359 0.5814

HCG -0.4958 4.392 1.564
MHCG 0.4958 constrained (= -HCG)

XU -0.09865 32.68 16.01
XTHE -32.2 constant (= -g)
XA1S -32.2 constant (= -g)
YV -0.2289 15.65 7.649

YPHI 32.2 constant (= g)
YB1S 32.2 constant (= g)

LU -0.2111 12.00 2.524
LV 0.1505 20.58 7.902

LB1S 142.5 1.378 0.4812
LA1S 22.14 6.168 1.536
MU -0.08550 15.32 3.183
MV -0.05298 16.50 5.618

MB1S -7.366 16.59 6.509
MA1S 67.74 1.618 0.4946
BA1S 0.5543 7.191 1.677
ZB1S -121.2 4.664 1.489
ZA1S -28.85 8.239 2.439
ZW -0.5024 11.42 4.897
ZR 0.9418 8.309 2.757
NP -3.126 8.149 2.923
NW 0.07237 12.90 4.475
NR -2.742 10.26 2.441

MNPED -21.74 constrained (= -NPED)
KR 1.731 6.595 1.767

MKRFB 5.483 constrained (= 2 NR)
G-Matrix

BLAT 0.4448 5.057 0.9598
BLON 0.03773 9.837 3.031
ALAT 0.05685 7.071 1.963
ALON -0.3824 4.917 0.7808
ZCOL 40.23 4.191 1.820
NCOL 2.303 10.37 3.744
NPED 21.74 5.376 1.531
TPED 0.1001 5.384 2.552
TCOL 0.04987 11.26 5.576

Table 6 - Identified derivatives and associated
accuracy statistics



Figure 3 - Frequency response comparisons of identified model (dashed line) with flight data (solid line)

 A2. Frequency Response Results
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Figure 4 - Time domain verification of identified model responses (dashed line) for
longitudinal and lateral inputs

 A3 Time Domain Verification Results
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Figure 5 - Time domain verification of identified model responses (dashed line) for
pedal and collective inputs
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